Synthetic blends of volatile, phytopathogen-induced odorants can be used to manipulate vector behavior
نویسندگان
چکیده
*Correspondence: Cristina E. Davis, Mechanical and Aerospace Engineering, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA e-mail: [email protected] Volatile organic compounds (VOCs) are emitted from all plants and these VOCs are important means of communication between plants and insects. It has been documented that pathogen infections alter VOC profiles rendering infected plants more attractive to specific vectors transmitting these pathogens than uninfected plants, thus potentially aiding in pathogen propagation. Mimicking these chemical cues might enable insect attraction away from the plant or disruption of host finding behavior of the vector. However, the practical implications have not been fully explored. We used citrus, Diaphorina citri and huanglongbing (HLB) as a model host-vector-disease system because HLB threatens citrus production worldwide and is similar to other critical diseases of food crops, such as Zebra Chip affecting potato. We formulated a synthetic chemical blend using selected HLB-specific biomarker compounds, and tested the blend with the Attenu assay system for chemosensory proteins. The Attenu assay system is a procedure that identifies interactions between insect chemosensory proteins and their ligands. We found that mixtures of compounds mimicking the volatile profile of HLB-infected citrus can be bound by chemosensory proteins. Further investigation of these blends in laboratory behavioral assays resulted in development of a synthetic lure that was more attractive to D. citri than natural citrus tree volatiles. This strategy could provide a new route to produce chemical lures for vector population control for a variety of plant and/or animal systems and it may result in the development of a practical lure for monitoring vectors of disease, such as D. citri.
منابع مشابه
Construction of a Synthetic Vector for Preparation of a 100 Base Pair DNA Ladder
DNA size markers are widely used to estimate the size of DNA samples on agarose or polyacrylamide gelelectrophoresis (PAGE). DNA markers can be prepared by mixing PCR products with definite sizes.Alternatively, they are prepared by restriction enzyme digestion of the genomic DNA of bacteriophages ornatural and synthetic DNA plasmids. The present study describes engineering of ...
متن کاملInduced Release of a Plant-Defense Volatile ‘Deceptively’ Attracts Insect Vectors to Plants Infected with a Bacterial Pathogen
Transmission of plant pathogens by insect vectors is a complex biological process involving interactions between the plant, insect, and pathogen. Pathogen-induced plant responses can include changes in volatile and nonvolatile secondary metabolites as well as major plant nutrients. Experiments were conducted to understand how a plant pathogenic bacterium, Candidatus Liberibacter asiaticus (Las)...
متن کاملParasitic wasp females are attracted to blends of host-induced plant volatiles: do qualitative and quantitative differences in the blend matter?
Naïve Cotesia vestalis wasps, parasitoids of diamondback moth (DBM) larvae, are attracted to a synthetic blend (Blend A) of host-induced plant volatiles composed of sabinene, n-heptanal, α-pinene, and ( Z)-3-hexenyl acetate, in a ratio of 1.8:1.3:2.0:3.0. We studied whether qualitative (adding ( R)-limonene: Blend B) or quantitative changes (changing ratios: Blend C) to Blend A affected the olf...
متن کاملArray of Chemosensitive Resistors with Composites of Gas Chromatography (GC) Materials and Carbon Black for Detection and Recognition of VOCs: A Basic Study
Mimicking the biological olfaction, large odor-sensor arrays can be used to acquire a broad range of chemical information, with a potentially high degree of redundancy, to allow for enhanced control over the sensitivity and selectivity of artificial olfaction systems. The arrays should consist of the largest possible number of individual sensing elements while being miniaturized. Chemosensitive...
متن کاملPREDICTION OF EARTHQUAKE INDUCED DISPLACEMENTS OF SLOPES USING HYBRID SUPPORT VECTOR REGRESSION WITH PARTICLE SWARM OPTIMIZATION
Displacements induced by earthquake can be very large and result in severe damage to earth and earth supported structures including embankment dams, road embankments, excavations and retaining walls. It is important, therefore, to be able to predict such displacements. In this paper, a new approach to prediction of earthquake induced displacements of slopes (EIDS) using hybrid support vector re...
متن کامل